S

Research Institute for Advanced Computer Science
NASA Ames Research Center

NG/
{/308ﬁ

An Implementation of the ;2
Look-Ahead Lanczos Algorithm
for Non-Hermitian Matrices

Roland W. Freund, Martin H. Gutknecht,
and Noél M. Nachtigal

(NASA-CR-138889) AN IMPLEMINTATION OF Ti S

- N il e L HE NO1- 524
LOUK-AHEAD LANCZUS ALGURITHM FOR 22670
NON-HERMITIAN MATRICES (Research Inst. for

Advanced Computer Science) 26 p CsCL 098 Unclas

63/61 0043089

RIACS Technical Report 91.09
April 1991

Submitted to SIAM Journal on Scientific and Statistical Computing

An Implementation of the
Look-Ahead Lanczos Algorithm
for Non-Hermitian Matrices

Roland W. Freund, Martin H. Gutknecht,
and Noél M. Nachtigal

The Research Institute for Advanced Computer Science is operated by
Universities Space Research Association (USRA),
The American City Building, Suite 311, Columbia, MD 21044, (301)730-2656.

Work reported herein was supported in part by DARPA via Cooperative
Agreement NCC 2-387 between NASA and USRA.

Bt ia e er 4 rashg e e mAT et et A o BTl o e o e i o e e

AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS
 ALGORITHM FOR NON-HERMITIAN MATRICES*

ROLAND W. FREUND¢{, MARTIN H. GUTKNECHTY, AnD NOEL M. NACHTIGAL§

Abstract. The nonsymmetric Lanczos method can be used to compute eigenvalues of large
sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the
original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. We
present an implementation of a look-ahead version of the Lanczos algorithm that—except for the
very special situation of an incurable breakdown— overcomes these problems by skipping over those
steps in which a breakdown or near-breakdown would occur in the standard process. The proposed
algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector
products and inner products as the standard Lanczos process without look-ahead.

Key words. Lanczos method, orthogonal polynomials, look-ahead steps, eigenvalue problems,
iterative methods, non-Hermitian matrices, sparse linear systems

AMS(MOS) subject classifications. 65F15, 65F10

1. Introduction. In 1950, Lanczos [19] proposed a method for successive reduc-
tion of a given, in general non-Hermitian, N x N matrix A4 to tridiagonal form. More
precisely, the Lanczos procedure generates a sequence HM™ n=12...,ofnxn
tridiagonal matrices which, in a certain sense, approximate A. Furthermore, in exact
arithmetic and if no breakdown occurs, the Lanczos method terminates after at most
L (< N) steps with H (L) a tridiagonal matrix which represents the restriction of A or
AT to an A-invariant or ATinvariant subspace of C¥ respectively. In particular, all
eigenvalues of H (L) are also eigenvalues of A, and, in addition, the method produces
basis vectors for the A-invariant or AT-invariant subspace found.

In the Lanczos process, the matrix A itself is never modified and appears only
in the form of matrix-vector products A - v and AT . w. Because of this feature, the
method is especially attractive for sparse matrix computations. Indeed, in practice,
the Lanczos process is mostly applied to large sparse matrices A, either for computing
eigenvalues of A or — in the form of the closely related biconjugate gradient (BCG)
algorithm [20] — for solving linear systems Az = b. For large 4, the finite termination
property is of no practical importance and the Lanczos method is used as a purely
iterative procedure. Typically, the spectrum of H () offers good approximations to
some of the eigenvalues of A after already relatively few iterations, t.e., for n € N.
Similarly, BCG — especially if used in conjunction with preconditioning — often
converges in relatively few iterations to the solution of Az = b.

Unfortunately, in the standard nonsymmetric Lanczos method a breakdown —
more precisely, division by 0 — may occur before an invariant subspace is found. In
finite precision arithmetic, such exact breakdowns are very unlikely; however, near-
breakdowns may occur which lead to numerical instabilities in subsequent iterations.

* The work of R. W. Freund and N. M. Nachtigal was supported in part by DARPA via Co-
operative Agreement NCC 2-387 between NASA and the Universities Space Research Association
(USRA).

t RIACS, Mail Stop Ellis Street, NASA Ames Research Center, Moflett Field, CA 94035, and
Institut fir Angewandte Mathematik, Universitit Wiirzburg, D-8700 Wiirzburg, Federal Republic
of Germany.

% Interdisciplinary Project Center for Supercomputing, ETH Zirich, ETH-Zentrum, CH-8092
Zarich, Switzerland.

§ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139.

1

b

Bt ST L RN

9 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL

The possibility of breakdowns has brought the nonsymmetric Lanczos process into
discredit and has certainly prevented many people from using the algorithm on non-
Hermitian matrices. The symmetric Lanczos process for Hermitian matrices A is a
special case of the general procedure in which the occurrence of breakdowns can be
excluded.

On the other hand, it is possible to modify the Lanczos process so that it skips over
those iterations in which an exact breakdown would occur in the standard method.
The related modified recurrences for formally orthogonal polynomials were mentioned
by Gragg [13, pp. 222-223] and by Draux [7]; also, in the context of the partial
realization problem, by Kung [18, Chapter IV] and Gragg and Lindquist [14]. However,
a complete treatment of the modified Lanczos method and its intimate connection
with orthogonal polynomials and Padé approximation was presented only recently, by
Gutknecht [15, 16]. Clearly, in finite-precision arithmetic, a viable modified Lanczos
process also needs to skip over near-breakdowns. Taylor [26] and Parlett, Taylor, and
Liu [24], with their look-ahead Lanczos algorithm, were the first to propose such a
practical procedure. However, in [26, 24], the details of an actual implementation are
worked out only for look-ahead steps of length 2. We will use the term look-ahead
Lanczos method in a broader sense to denote extensions of the standard Lanczos
process which skip over breakdowns and near-breakdowns. Finally, note that, in
addition to [15, 16], there are several other recent papers dealing with various aspects
of look-ahead Lanczos methods (see [1, 2, 4, 5, 8, 12, 17, 22]).

The main purpose of this paper is to present a robust implementation of the
Jook-ahead Lanczos method for general complex non-Hermitian matrices. Our inten-
tion was to develop an algorithm which can be used as a black box. In particular,
the code can handle look-ahead steps of any length and is not restricted to steps of
length 2. On many modern computer architectures, the computation of inner products
of long vectors is a bottleneck. Therefore, one of our objectives was to minimize the
number of inner products in our implementation of the look-ahead Lanczos method.
The proposed algorithm requires the same number of inner products as the classical
Lanczos process, as opposed to the look-ahead algorithm described in [26, 24], which
always requires additional inner products. In particular, our implementation differs
from the one in [26, 24] even for look-ahead steps of length 2.

The outline of the paper is as follows. In Section 2, we recall the standard
nonsymmetric Lanczos method and its close relationship with orthogonal polynomials.
Using this connection, we then describe the basic idea of the look-ahead versions of
the Lanczos process. In Section 3, we present a sketch of our implementation of the
algorithm with look-ahead and some of its basic properties. In Section 4, we discuss in
more detail issues related to the look-ahead feature of the algorithm, while in Section 5
we are concerned with issues related to the implementation of the algorithm. Finally,
in Section 6, we report a few numerical experiments with the algorithm, both for
eigenvalue problems and linear systems, and in Section 7, we make some concluding
remarks.

We remark that an extended version of the present paper is available as a technical
report [10]. In particular, details omitted here can be found therein. Furthermore,
the look-ahead Lanczos process can be used to compute approximate solutions to
Az = b, solutions which are defined by a quasi-minimal residual (QMR) property.
The resulting QMR algorithm is described in detail in [11, 12].

For notation, we will adhere to the Householder conventions, with only a few
exceptions which we will note. Throughout the paper, all vectors and matrices can be

o, o e BT AV e e o T T T p R R = 77 =8 0 70 T S

AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS ALGORITHM 3

assumed to be complex. As usual, MT = (u;;) and M¥ = (7;;) denote the transpose
and the conjugate transpose, respectively, of the matrix M = (pij). The largest and
smallest singular value of M is denoted by omax (M) and omin (M), respectively. The
vector norm ||z]| = VzH z is always the Euclidean norm and [|M|| = omax (M) denotes
the corresponding matrix norm. The notation

Kn(c, B) := span {¢, Be, ... ,B"" ¢}

is used for the nth Krylov subspace of ch generated by c € C" and the N x N matrix
B.
?n = {‘I’(/\) E70+71A+ +7nA" I YoMy Tn € C}

denotes the set of all complex polynomials of degree at most n. Furthermore, A is
always assumed to be a possibly complex and in general non-Hermitian N x N matrix.

Finally, we note that in our formulation of the nonsymmetric Lanczos algorithm
and its look-ahead variant, we use AT rather than AH . This was a deliberate choice
in order to avoid complex conjugation of the scalars in the recurrences; the algorithms
can be formulated equally well in either terms (cf. (2.18)).

2. Background. In this section, we briefly recall the classical nonsymmetric
Lanczos method [19] and its close relationship with formally orthogonal polynomials
(FOPs hereafter). Using this connection, we then describe the basic idea of the look-
ahead Lanczos algorithm.

Given two nonzero starting vectors v; € C" and w; € CV, the standard non-
symmetric Lanczos method generates two sequences of vectors {va}E_, and {wa}f_,
such that,forn=1,...,L,

@1 span {v1,v2,...,vn} = Ka(v1, 4),

span{wy,w2,... ,Wn} = Kn(wl,AT),
and

5#0 ifi=j
2.2 To, = ! forall i,j=1,...,n.
(2:2) Y { 0 otherwise, orat "

The actual construction of the vectors v,, and w, is based on the three-term recurrences

Ung1 = Avy — antn = Bntn-1,

2.3

() Wn41 = ATwn — QplWp — ﬂnwn—h

where o = wl Av, and g, = wl_Ava b,
" 6n " 5n—1 - 6n—1

are chosen to enforce (2.2). For n = 1, we set §; = 0 and vo = wg = 0 in (2.3). Letting
(2'4) V(n) = [vl vz T vn] and ‘V(n) = [wl w: PR wﬂ]

denote the matrices whose columns are the first n of the vectors v; and w;, respectively,
and letting

ay ﬂ2 0 .e 0

1 as ’ :

H® = 0 0
Bn

0 -+ 0 1 an

4 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL

denote the tridiagonal matrix containing the recurrence coefficients, we can rewrite
(2.3) as ' '

Av(")_:V(“)H(”)—{-[O v 0 vag1],

2.5
() ATw(n)=W(")H(“)+[0 e 0 w,,.H].

Moreover, the biorthogonality condition (2.2) reads as
(2.6) (WNTy () = D™ .= diag (61,63, ... ,6a)-

Let L be the largest integer such that there exist vectors v, and wa,n=1,...,L,
satisfying (2.1) and (2.2). Note that L < N and that, in view of (2.3), L is the smallest
integer such that

(2.7) wl vp =0.
Moreover, let
L, = Ly(v, A) = dimKn(vi,4) and Ly = Li(wy, AT) := dim Kn (w1, A7)

denote the grade of v; with respect to A and the grade of w; with respect to AT,
respectively (cf. [28, p. 37]). There are two essentially different cases for fulfilling
the termination condition (2.7). The first case, referred to as regular termination,
occurs when vy ; = Qorw,, =0 fo = 0, then L = L, and the right Lanczos
vectors vy, ..., v, span the A-invariant subspace K, (vi, 4). Similarly, if wy, =0,
then L = L; and the left Lanczos vectors wy,...,wr, span the AT.invariant subspace
Ki,(w;, AT). Unfortunately, it can also happen that the termination condition (2.7)
is satisfied with v, ,, # 0 and wy,, # 0. This second case is referred to as serious

breakdown [28, p. 389]. Note that, in this case,
L < Ly :=min{L;, L,}

and the Lanczos vectors span neither an A-invariant nor an AT.invariant subspace of
CN

It is the possibility of serious breakdowns, or, in finite precision arithmetic, of
near-breakdowns, i.e.,

wz‘+lvn+l o] 0, but Wni1 # 0 and Un41 # 0,

that has brought the classical nonsymmetric Lanczos algorithm into discredit. How-
ever, by means of a look-ahead procedure, it is possible to leap (except in the very
special case of an incurable breakdown [26]) over those iterations in which the stan-
dard algorithm would break down. Next, using the intimate connection between the
Lanczos process and FOPs, we describe the basic idea of the look-ahead Lanczos
algorithm.

First, note that

Kn(vl,A) = {\II(A)vx I ¥ € Pn—l},

(28) Ka(wy, AT) = {¥(AT)wy | ¥ € Pasi}

em o eas e epeRem TSI e mnTe S T T AT e e emiw e

Wt Ty g

e

R M . e ol

et o T 5 e A ¥ i+ i i e L F A S X T LTk I i M 3wt 2 1 % e R L LTA T LA T TR A o g

AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS ALGORITHM 5
In particular, in view of (2.3), forn=1,...,L,
(2.9) vp = ¥n_1(A)vy and w, = ¥, 1 (AT)wy,

where ¥,_; € Pn_1 is a uniquely defined monic polynomial. Then, introducing the
formal inner product

(2.10) (®,7) := (8(AT)wy)T (¥(A)v1) = wT S(A) (A0,

and using (2.1), (2.8), and (2.9), we can rewrite the biorthogonality condition (2.2) in
terms of polynomials:

(2.11) (¥n-1,¥)=0 forall ¥€P,_2
and
(2.12) (¥n-1,¥n-1) #0.

Note that, except for the Hermitian case, i.e., A = A¥ and w; = 7, the formal inner
product (2.10) is indefinite. Therefore, in the general case, there exist polynomials
¥ # 0 with “length” (¥, ¥) = 0 or even (¥, ¥) <0.

A polynomial ¥,,_; € Pp_1, ¥s—1 # 0, that fulfills (2.11) is called a FOP (with
respect to the formal inner product (2.10)) of degree n — 1 (see, e.g., [3], [7], [15]).
Note that the condition (2.11) is empty for n = 1, and hence any ¥o = 7o #0isa
FOP of degree 0. From (2.11),

Voo t(N = +7r+ o+ 7m0

is a FOP of degree n — 1 if, and only if, its coefficients 7o, ... ,7s-1 are a nontrivial
solution of the linear system

poo e e o Pin-1
231 2 - : N HBn
(213) b2 T2 = —Yn-1 Hn+1
: H2n-5
PBnez o+ o Pon-s Hzn—4 Tn—2 H2n-3

Here]]
By = wfAlv, = (1,NM), j=0,1,...,

are the moments associated with (2.10). A FOP ¥,_, is called regular if it is uniquely
determined by (2.11) up to a scalar, and it is said to be singular otherwise. We remark
that FOPs of degree 0 are always regular. With (2.13), one easily verifies that a regular
FOP ¥,_; has exactly degree n — 1. In particular, a regular FOP is unique if it is
required to be monic. Moreover, singular FOPs occur if, and only if, the corresponding
linear system (2.13) has a singular coefficient matrix, but is consistent. If (2.13) is
inconsistent, then no FOP ¥,_, exists. This case is referred to as deficient. By
relaxing (2.11) slightly, one can define so-called deficient FOPs (see [15] for details).
Simple examples (see, e.g., [11, Section 13]) show that the singular and deficient cases
do indeed occur. Thus, regular FOPs need not exist for every degree n — 1. We

6 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL

would like to stress that this phenomenon is due to the indefiniteness of (2.10). For
a positive definite inner product (-, -), unique monic formally orthogonal polynomials
always exist, up to the degree equal to the grade of v, with respect to A. Such a
definite inner product is induced in the Hermitian case A=A andw, =97. In
this case, the FOPs are true orthogonal polynomials with respect to a positive weight
whose support is a set of points on the real axis (see, e.g., [25]). In addition, they
have real coefficients and therefore

(¥, ¥) = wTU(A)E(A)v, = vFT(AT)U(A, = [¥(A)n .

Finally, given a regular FOP ¥,,_,, it is easily checked whether a regular FOP of
degree n exists. Indeed, using (2.13), one readily obtains the following

LEMMA 2.1. Let ¥, be a regular FOP (with respect to the formal inner product
(2.10)) of degree n — 1. Then, a regular FOP of degree n ezists if, and only if, (2.12)
is satisfied.

Let us return to the standard nonsymmetric Lanczos process (2.3). Using (2.7),
(2.9), (2.10), and Lemma 2.1, we conclude that a serious breakdown occurs if, and
only if, no regular FOP exists for some L < L. In this case, the termination index L
is the smallest integer L for which there exists no regular FOP of degree L.

On the other hand, there is a maximal subset of indices

(2.14) {ny1,n2,...,m;} € {1,2,..., L}, m:=1<ny<---<ny < Ly,

such that, for each j =1,2,...,J, there exists a monic regular FOP ‘Il,,}___l € ’P,,j_l.
Note that n; = 1 since ¥o(A) = 1 is a monic regular FOP of degree 0. It is well
known [7, 14] that three successive regular FOPs ‘I’nj_l—l’ \Il,,j_l, and ‘Il,,j“_1 are
connected via a three-term recurrence. Consequently, setting, in analogy to (2.9),

Vn, = ‘Ilnj_l(A)vl and W, = \I!,,j__l(AT)wl,

n,
we obtain two sequences of vectors {"n,. }JJ=1 and {w,,,};-’=1 which can be computed
by means of three-term recurrences. These vectors will be called regular vectors,
since they correspond to regular FOPs. Note that the starting vectors v; and w,
are always regular. The look-ahead Lanczos procedure is an extension of the classical
nonsymmetric Lanczos algorithm; in exact arithmetic, it generates the vectors v, and

2
w,,j=1,...,J. lfn; =L, in (2.14), then these vectors can be complemented to
3
a basis for an A-invariant or AT-invariant subspace of C". An incurable breakdown
occurs if, and only if, ny < L, in (2.14). Finally, note that
wl v= wly, =0 forall ve I{nj_l(vl,A), wE K,,j_l(wl,AT),
b]
ji=1,...,J.

The look-ahead procedure we have sketched so far only skips over exact break-
downs. It yields what is called the nongeneric Lanczos algorithm in [15]. Of course,
in finite precision arithmetic, the look-ahead Lanczos algorithm also needs to leap
over near-breakdowns. Roughly speaking, a robust implementation should attempt

to generate only the “well-defined” regular vectors. In practice, then, one aims at
generating two sequences of vectors {va,, }E_, and {w"i.}£(=l where

(215) {njh}f=l (.; {n] };'I=11 jl = 1)

B T e R K s

P

Rt ok A d

g e et i R .+ - = T Ty e v e X o= T & T ———
: T : W, RS T T TR T T T, T T, T T T

AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS ALGORITHM 7

is a suitable subset of (2.14). We set ji = 1, since v; and w; are always regular. The
problem of how to determine the set (2.15) of indices of the “well-defined” regular
vectors will be addressed in detail in Section 4.

In order to obtain complete bases for the subspaces K,(vy, A) and Ka(wy, AT),
we need to add vectors
v € Kﬂ(vlsA)\Kn—l(th) and w, € Kn(wl)AT)\K —l(wllAT):

2.16
(2.16) n=nj_,+1,...,n5, -1 k=23,... K,

to the two sequences {vn;, e, and {wn, }E.,, respectively. Clearly, (2.16) guar-
antees that (2.1) remains valid for the look-ahead Lanczos algorithm. The vec-
tors in (2.16) are called inner vectors. Moreover, for each k, the vectors vy, n =
nj.,m, + 1,...,nj,,, — 1, and correspondingly for wy, are referred to as the kth
block. The inner vectors of a block built because of an exact breakdown correspond to
singular or deficient FOPs, while the inner vectors of a block built because of a near-
breakdown correspond to polynomials which in general are combinations of regular,
singular, and deficient FOPs. We will refer to both the regular and the inner vectors
v, and w, generated by the look-ahead variant as right and left Lanczos vectors, in
analogy to the terminology of the standard nonsymmetric Lanczos algorithm.

So far, we have not specified how to actually construct the inner vectors. The
point is that the inner vectors can be chosen such that the v,’s and wy,’s from blocks
corresponding to different indices k are still biorthogonal to each other. More precisely,
with V() and W(") defined as in (2.4), we have, in analogy to (2.6),

(2.17) (WEHTy) = D) pn=n; —1,1=2,3,... K.
Here, D(") is now a nonsingular block diagonal matrix with I — 1 blocks of respective
size (nj, ., —15a) X (Rjpyy — 52), K =1,..., 1= 1. Similarly, (2.5) holds, for n = n;, ~1,

1=23,...,K, where H () is now a block tridiagonal matrix with diagonal blocks of
size (nj,,, — Mjy) X (Mjugn —), k=1, 1= 1 (cf. (3.4-5)).

There are two fundamentally different approaches for constructing inner vectors
with the property (2.17). In both cases, inner vectors are first generated using a simple
three-term recurrence. However, in the first approach, each inner vector in a block
is then biorthogonalized against the previous block as soon as it is constructed. This
variant will be called the sequential algorithm. In the second approach, all the inner
vectors in a block are first constructed using the three-term recurrence, and then the
entire block is biorthogonalized against the previous block and possibly, depending on
the size of the current block, against vectors from blocks further back. This variant
will be called the block algorithm. The sequential algorithm is more suitable for a serial
computer, while the block algorithm is more suitable for a parallel computer. In this
paper, we describe only the sequential algorithm and its implementation. A sketch
of the block algorithm can be found in [10]. Details of an actual implementation and
numerical results will be presented elsewhere.

Finally, two more notes. First, the inner product (2.10) could have been defined

as

(2.18) (@, %) := (@F(AT)m) " (¥(A)v1) = TTH(A)¥(A)vy,

and the algorithm can be formulated equally well in either terms. Second, in the
rest of the paper, we will use the notation ni := nj, for the indices of the “well-

defined” regular vectors. However, notice that there is no guarantee that the indices ng
generated by the look-ahead Lanczos algorithm in finite precision arithmetic actually
satisfy (2.15).

i

g R T T T T TR TR e ey

8 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL

3. The sequential algorithm. In this section, we start the discussion of the se-
quential Lanczos algorithm with look-ahead. We present a sketch of the algorithm and
its basic properties, then discuss some aspects related to its practical implementation
in the next two sections.

First, we introduce some notation. As in the last section, n = 1,2,... denote the
indices of the Lanczos vectors v, and w,. The index £ = 1,2,... is used as a counter
for the blocks built by the look-ahead algorithm. Moreover, we always use | = I(n) to
denote the index of the block which contains the Lanczos vectors v, and wy. Recall
that by n; we denote the indices of the computed regular vectors, which are always
the first vectors in each block k. Thus, n; is the index of the last computed regular
vector with index < n. We have n; = 1. Capital letters with subscript k denote the
matrices containing quantities from block k. For example,

Vi = [tny Uny41 --- Unpyi—1)

is the matrix whose columns are the Lanczos vectors from a completed block k. Capital
letters with superscripts (n) denote matrices containing quantities from steps 1 through
n, same as in (2.4). With this notation, the matrix form of the sequential algorithm
with look-ahead is similar to (2.5-6)

o AV = v M) L0 --r 0 wvpga],
ATW(n) = W(")H(") + [0 .- 0 Wn 1 }:
and
(3.2 (WE)Ty™ = pt),
Here
(3.3) D) = diag(81,62,...,8), G =WV, k=12,...,01=l(n)

is block diagonal, and the blocks 61, 62, ..., 8- are nonsingular. If n = ny4; — 1, then
the Ith block, &, in (3.3) is also nonsingular and it is called complete. In particular,
if 6, is complete, then D(®) itself is nonsingular, and (3.3) reduces to (2.17). In this
case, the next regular vectors vn,,, and wn,,, can be computed and start a new block.

In (3.1),

oy ﬂ2 0o -+ 0
Y2 oz - e
(3.4) H® =1, - - . 9
T
0 - 0 T a

is an n x n block tridiagonal upper Hessenberg matrix with blocks of the form

* * 0 -+ - 0 1
1 D 0
(3.5) ar= |0 . B

L et DR e T WU CiRT e SR TTNDONE TITI T et Eataak hat s s el L e S

[U SUPUE TSP PUIPP NI ARSI W IPUSRUSRIIRPE Rl B NS AEESHL ML L

AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS ALGORITHM 9

while the B¢’s are in general full matrices. Note that here we violate the Householder
conventions, by using small Greek letters to denote quantities which may be matrices.
The justification is that in general the algorithm takes regular steps, and hence these
quantities are usually scalars. Let hy := ngy —mi, k= 1,2,..., be the size of the
kth block. For k < I = I(n) the matrices ax, B¢, and v, are of size by x hi, ey X hg,
and h; x hi_1, respectively. In general, however, the Ith block need not be complete.
Hence, the matrices ay, £, and 4 corresponding to the current (1th) block are of size
By x 71;, hi—1 X I.u, and k; x hi_1, respectively, where I~11 =n+1-n.

We will assume that the inner vectors in a block are generated using a three-term
recursion of the form

Ungl = Avp — (pln — Mn¥n-1,

(36) Wnit = ATwn ~ (nWn = MnWn-1,

where (n and 7, are recursion coefficients and 7,, = 0, ¥ = 1,2,.... One may
choose these coefficients so that they remain the same from one block to the next
and change only with respect to their index inside the block, n — ng, or one may
choose these coefficients so that they change from one block to the next. For instance,
one practical choice for the polynomials in (3.6) are suitably scaled and translated
Chebyshev polynomials, so that the inner vectors are generated by the Chebyshev
iteration [21]. In this case, the translation parameters could be adjusted using spectral
information obtained from previous Lanczos steps. We do not necessarily advocate the
use of fancy recursions in (3.6). From our experience, the algorithm we propose builds
very small blocks, typically of size 2 or 3. Except for artificially constructed examples,
the largest block we observed in test runs with “real-life” matrices was of size 4. It
occurred for the SHERMANDS matrix where out of 1500 steps, the algorithm built 2x 2
blocks 49 times, 3 x 3 blocks 7 times, and one 4 x 4 block (see [12, Example 2]). Hence,
the recursion in (3.6) is not overly important, and in our experiments, we have used the
recursion coefficients ¢, = 1 and, if n # ng, 7, = 1. On the other hand, for the block
version of the algorithm, where larger blocks are built, more attention needs to be paid
to the recursion used. As indicated, details of the block algorithm will be presented
elsewhere. Finally, one could consider orthogonalizing (in the Euclidean sense) the
right respectively left Lanczos vectors within each block. However, for the blocks we
have seen built, such an orthogonalization process did not lead to better numerical
properties of the algorithm. Therefore, in view of the additional inner products which
need to be computed, orthogonalizing within each block is not justified.

In practice, for reasons of stability, one computes scaled versions of the right and
left Lanczos vectors, rather than the “monic” vectors v, and wy corresponding to
monic FOPs. A proven choice (see [24], [26]) is to scale the Lanczos vectors to have
unit length. We denote by #, and 1, the scaled versions defined by

Bp = va/[|vnll and Wn = wa/||wall,

and more generally, we will denote by hat (") quantities containing or depending on
the scaled vectors. For example, setting

™ := diag(|lvll, lvzll - - - o lonl) H diag (1/ lfoall, 1/ sl -, 1/ Tlonll),

. H®) Hon41ll T
H(n):[] el = Len:=[0 -~ 0 17 €R",
D= | et | Pt =T o=]

P s mi v e i temmaes s el SeACaman G e L Tl L i A e n M T L e A kD

e e e Tmim v e —————— . 7 — g " Ty N y——r -

10 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL
we can rewrite the first relation in (3.1) in terms of scaled vectors as follows:
37 AV®) = P),

With this note, we now present a sketch of the sequential Lanczos algorithm with

look-ahead.

ALGORITHM 3.1 (SEQUENTIAL LANCZOS ALGORITHM WITH LOOK-AHEAD).
0) ChOl.ZSC 7y, lih‘ € CN wlfh "131‘” =ﬂ”tf)1” =1;
Set Vi = o, W=, =WV,
Setni=1,1=1,9g=w=0V=W=0,p=6 =1
Forn=12,... :
1) Decide whether 1o consiruct fn41 and Wnyy as regular or inner vectors
and go to 2) or 3), respectively;
2) (Regular step.) Compute

38) Tnpr = Abp — V; 657 IWT Aby = Vi 6, W Aby,
Wn41 = AT, — T/V, SI-TVITAT’IM - VVl-x‘g::Tl%Z1ATtbn»
setnpp =n+1, I=1+4+1, V;:VV::@, and go lo 4);
3) (Inner step.) Compute

(3 9) Tp41 = Ay — (nln — (ﬂn/Pn) Up—1 — "};_151—_11 VVF_'IAi)m
"I/n-}-l = ATﬁ)n —ann - (nn/fn) Wpo1 — ﬁlz_lsg__ql'vlz1ATﬁ’n;
4) Compute pny1 = |[Tns1] and éni1 = [[Bnsall;

prﬂ+1 =0 or €ﬂ+l = 0) stop;
Otherwise, set

Vnit = Ons1/Pn+1, Unti = Ung1/Enstr,

(3.10) L= e/ v = Tt/ . e
Vi=[Vi tap]l, Wi=[Wi], &=WV;

5) Add the nonzero elements of the nth column to H™
and set (ﬁﬁ"))nﬂ'n = Pni1-

Note that, if 9p41 and tn41 are inner vectors, the size of the current incomplete
block I is increased by 1; if they are regular vectors, then the Ith block is complete
and a new block, the (I + 1)st, is started, with 9,41 and a4y as its first vectors.
Finally, we remark that, in view of (3.7), the nonzero elements of the nth column of

H(™ oceur as coefficients in the first recursion of (3.8) respectively (3.9).

4. Building blocks. In this section, we discuss the criteria used to decide in
step 1) of Algorithm 3.1 whether a pair of Lanczos vectors ¥n41 and 4y is built
as inner vectors or as regular vectors. We propose three criteria, namely (4.3), (4.4),
and (4.5) below. If all three checks (4.3-5) are satisfied, then 941 and ;41 are
constructed as regular vectors, otherwise, they are constructed as inner vectors. Let
“us motivate these three criteria.

First, recall (cf. (3.3)) that for #n4; and 41 to be built as regular vectors it is
necessary that 4 is nonsingular. Therefore, it is tempting to base the decision “regular

e s e i s am T T TTRETTTTMYTON Y MR STMLLENY D S Tt eI owiESEE | S

L e

e,

i e e

AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS ALGORITHM 11

versus inner step” solely on checking whether &1 is close to singular, and to perform a
regular step if, and only if,

(4.1) Omin (Sl(n)) 2 tOI)

for some suitably chosen tolerance tol. For example, Parlett [22] suggests tol = €!/4
or tol = €1/3, where ¢ denotes the roundoff unit. Then (4.1) would guarantee that
complete blocks of computed Lanczos vectors satisfy

a’min(Sg) >tol, k=1,2,....
This, together with (3.3), would imply by [22, Theorem 10.1] that

(4.2) Omin (V™) > % and omin (W™) > % n=n;-1,k=12,....

Since the columns of V(") and W() are unit vectors, omin (f/(")) and omin (W(")) are
a measure of the linear independence of these vectors; in particular, (4.2) would ensure
that the Lanczos vectors remain linearly independent. However, in the outlined algo-
rithm, the block orthogonality (3.2-3) is enforced only among two or three successive
blocks, and in finite precision arithmetic, biorthogonality of blocks whose indices are
far apart is typically lost. The theorem assumes that (3.2-3) hold for all indices, and
without this, the theorem fails in finite arithmetic. We illustrate this with a simple
example.

Ezample 4.1. In Figure 4.1, we plot omin (3;(,,)) (dots), miny<x<i(n) (Tmin (3,,))
(solid line), and /n Omin (V™) (dotted line), as functions of the iteration index
n=1,2,..., for a random 50 x 50 dense matrix. The theorem predicts that

‘/7_‘ Omin (f/(n)) 2 lS12'1<i111(")(‘7min (sk))r

which is clearly not the case.

As this simple example shows, the check (4.1) alone does not ensure that the
computed Lanczos vectors are sufficiently linearly independent. In particular, if the
look-ahead strategy is based only on criterion (4.1), the algorithm may produce within
a block Lanczos vectors which are almost linearly dependent. When this happens, the
check (4.1) usually fails in all subsequent iterations and thus the algorithm never
completes the current block, i.e., it has generated an artificial incurable breakdown.

In addition, numerical experience indicates another problem with (4.1): for val-
ues of tol which are “reasonably” larger than machine epsilon, the behavior of the
algorithm is very sensitive with respect to the actual value of tol. We also illustrate
this with an example.

Ezample 4.2. We applied the Lanczos algorithm to a nonsymmetric matrix A
obtained from discretizing a 3-D partial differential equation (cf. Example 6.4 in
Section 6). This example was run on a machine with ¢ &~ 1.3JE—29. In the first case,
we set tol = €'/ x~ 6.0E—08, while in the second case, we set tol = ¢!/3 ~ 2.3E~10.

. In Figure 4.2, we plot Omin (S,(,,)) versus the iteration index n for the two runs, the

dotted line for ¢!/4 and the solid line for €!/3. In the first case, the algorithm starts
building a block which it never closes, and the singular values clearly become smaller
and smaller. Yet if tol is only slightly smaller, as in the second case, the algorithm

B - SR e ey A e Lh e S PRt i et oy b o Ji Se o soa s S FRSTR G Amacni bk ad ce LNDS MauibVEcll S S aaalicio oot Shotakt-Shial Wbt iiibidoon = CEoh At ek At i it

2 AT T PR T O AT Y U IS

12 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL

runs to completion, in this case solving the linear system to the desired accuracy, and
thus indicating that the block built in the first case was not a true, but an artificial
incurable breakdown.

We note that the sensitivity of look-ahead procedures to the choice of tolerances,
such as tol in (4.1), was also observed in [5]. However, no remedy for this phenomenon
is given in [5]. Furthermore, we remark that the problem of generating almost linearly
dependent vectors is not specific to the Lanczos biorthogonalization process. Indeed,
similar effects can also occur in true orthogonalization methods (cf. [27]).

Examples 4.1 and 4.2 clearly show that the decision “regular versus inner step”
cannot be based on (4.1) alone. Instead, we propose to relax the check (4.1), so that
it merely ensures that Sg(n) is numerically nonsingular, and to add the checks (4.4-5)
below which guarantee that the computed Lanczos vectors remain sufficiently linearly
independent. Hence, instead of (4.1), we check for

(43) Omin (Sl(n)) 26

where ¢ denotes the roundoff unit.

Our numerical experiments have shown that typically the algorithm starts to gen-
erate Lanczos vectors which are almost linearly dependent, once a regular vector 41
was computed whose component Ad, € Knt1(v1, A) is dominated by its component
in the previous Krylov space K,(v1, A) (and similarly for wn4+1). In order to avoid
the construction of such regular vectors, we check the l;-norm of the coefficients for
Vi—1 and V; in (3.8); #n+41 can be computed as a regular vector only if

m-—l n
@) 5 [GRAWE ARy <n(a) and 3[R A < nla)
j=ni-g j=n

Here n(A) is a factor depending on the norm of A; we will indicate later how this
factor is computed. Similarly, we check the {;-norm of the coefficients for Wi_: and
W, in (3.8); tin41 can be computed as a regular vector only if

ny—-1 n
(48) Y |GTUT AT an);| < n(4) and Y |77 OT AT ;| < n(4).
j:ﬂ[-1 j="l

The pair fin41 and thy41 is built as regular vectors only if the checks (4.3-5) hold true.

We need to indicate how n(A) is chosen in (4.4-5). Numerical experience with
matrices whose norm is known indicates that setting n(4) = ||A|] is too strict and can
result in artificial incurable breakdowns. A better setting seems to be n(A4) = 10-]|A]|,
but even this is dependent on the matrix. In any case, in practice one does not know
[|A]l, and there is also the issue of a maximal block size, determined by limits on
available storage. To solve the problems of estimating the norms and a suitable factor
n(A), as well as cope with limited storage and yet allow the algorithm to proceed as
far as possible, we propose the following procedure. Suppose we are given an initial
value for n(A), based either on an estimate from the user (for example, n(A) from a
previous run with the matrix A), or by setting C -

n(A) = max {[|4d,||, [|AT@:)} -

T TR T R L, M PR P L P O R I W e < S e e

e N Tz T

AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS ALGORITHM 13

Note that here A denotes the matrix actually used in generating the Lanczos vectors,
thus including the case when we are solving a preconditioned linear system. We then
update n(A) dynamically, as follows. In each block, whenever an inner vector is built
because one of the checks (4.4-5) is not satisfied, the algorithm keeps track of the size
of the terms that have caused one or more of (4.4-5) to be false. If the block closes
naturally, then this information is not needed. If, however, the algorithm is about to
run out of storage, then n(A) is replaced with the smallest value which has caused an
inner vector to be built. The updated value of n(A) is guaranteed to pass the checks
(4.4-5) at least once, and hence the block is guaranteed to close. This also frees up
the storage that was used by the previous block, thus ensuring that the algorithm can
proceed.

5. Implementation details. We now turn to a few implementation details.
In particular, we wish to show how one can implement the sequential algorithm with
the same number of inner products per step as the classical Lanczos algorithm. For a
regular step, one needs to compute &, W,T Aby,, and WT Ab, in (3.8). For an inner
step, one needs to compute WT | Aby, in (3.9) and to update 4 in (3.10). We will show
that for a block of size Ay, only 2h; inner products are required: 2h;—1 will be required
to compute &;, and one inner product will be required to compute WT Ab,. We will
obtain WEIAG,, without performing any inner products. To simplify the derivations,
we will use the “monic” vectors v, and wy,. All quantities involving the scaled vectors
9, and W, can be obtained from the corresponding quantities involving v, and w,
simply by scaling. Finally, we remark that, using a similar argument as in (5.1) below,
one easily verifies that ’

W',TAvn = V,TATw,. and VV,T_IAv,, = V,ZlATw,,.

Therefore, the coefficients 8,7 ;T AT b, and 67T VT AT tb,, which occur in the recur-
sions for the left Lanczos vectors in (3.8) or (3.9), can be generated from 5," 'WT Ad,
and 3,"_ 11 I«i’i’_'lAﬁn, without computing any additional inner products.

Consider first §;. Using (2.9) and the fact that polynomials in A commute, we
deduce that

(5.1) wlv; = wTH(A)T; (A = w] ¥ (A)¥(A)vr = w] vi.

This shows that the matrix § is symmetric, and hence we only need to compute its
upper triangle.

We will now show that once the diagonal and first superdiagonal of § have been
computed by inner products, the remaining upper triangle can be computed by recur-
rences. Let w; and v; be two vectors from the current block. Using (3.6) and the fact
that the inner vectors from block ! are orthogonal to the vectors from the previous
block, we have
wl v = w] (Avj_1 = (j10j-1 = Mj-19i-2)

= (ATwi)Tvj_1 = Gjo1w] vj—1 = Nj1w] vj=2
= (wi1 +Gwi + miwio1) vjo1 = Gj—1w] vj—1 — nj—1w] vj-3

- T T T T
= wi vj—1 + Gw; vjo1 + mwi_ V-1 = G-1Wi Vi1 = -1 V-2

P ————e—_ 1T e R PR e T e S o P

14 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL

Thus, w] v; depends only on elements of & from the previous two columns, and hence,

with the exception of the diagonal and the first superdiagonal, can be computed with-

out any additional inner products. Note that the recurrences and the orthogonality

used in the above derivation are enforced numerically, and so computing w7 v; by the

above recurrence should give the same results — up to roundoff - as computing the

inner product directly. Y
We will now show how to compute WT Av,, with only one additional inner product,

while WT | Avn can be obtained with no additional inner products. Consider w Avy,

for w; a vector from either the current or the previous block.

wl Av, = (ATw) vn = (Wigr + Gwi + niWi—1)" vn

g T
= w;’z;.lvn + C.-w,Tv,, + nw_1Vn.

Fori < ny — 1, VV,'I_'lv,, = 0, and hence w,—TAvn = 0. For i = n; — 1, the above
. reduces to wl,_, Av, = w? vn, which is computed as part of the first row of &. For
ni < i < nyyq, all of the terms needed are available from §;. Finally, for the last vector
in the current block, { = nj4; — 1, we do not have w,T," Ry and hence have to compute
it directly, thus requiring another inner product. T

6. Numerical examples. We have performed extensive numerical experiments
with our implementation of the look-ahead Lanczos algorithm, both for eigenvalue
problems and for the solution of linear systems. In this section, we present a few
typical results of these experiments. Further numerical results are reported in [11]
and [12]. : ,

Approximations to the eigenvalues of A can be obtained from the look-ahead
Lanczos algorithm by computing some or all of the eigenvalues of the Lanczos matrix
H(™) the so-called Ritz values. In general, spurious approximate eigenvalues can oc-
cur among the Ritz values. We have used the heuristic due to Cullum and Willoughby
[6] to identify and eliminate spurious Ritz values. Although this procedure was origi-
nally proposed for the scalar tridiagonal matrices generated by the standard Lanczos
process, we also found it to work satisfactorily for the block tridiagonal matrices H®
produced by the look-ahead Lanczos algorithm. The eigenvalues of H™) were always
computed using standard EISPACK routines.

For the solution of nonsingular linear systems

(6.1) Az =b,

we combine the look-ahead Lanczos algorithm with the QMR approach. More pre-
cisely, let zo € CV be any initial guess for (6.1) and choose the normalized starting
residual vector

91 1= ro/pe, To:=b—Azo, po:=]|lroll,

as the first right Lanczos vector in Algorithm 3.1. The QMR method then generates
approximate solutions to (6.1) defined by

(8.2) =204+ V™z, n=12,...,
where z,, is the solution of the least squares problem

, er:=[1 0--- 0]T eROHD.

(6.3) min "poex - A"z

.~ ‘ﬂvg‘w‘,-g—,v5':-,'{:l-w“—f'rvvjs?.‘_—'{-\w""wﬁwwZQW‘?.'"'{ﬂ‘:‘;—f’"‘?!’*"ﬁu’w“é‘ Ty S T T S R VI R e ST L T R T e s

) AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZO0S ALGORITHM 15

We remark that, using (3.7), one easily verifies that the residual vector corresponding
to the iterate (6.2) satisfies

(6-4) o= b— Az, = V(*+) (pgel - fIﬁ")zﬂ) .

Thus the choice (6.3) of z, just guarantees that the Euclidean norm of the coefficient
vector in the representation (6.4) is minimal. For details and further properties of the
QMR method, we refer to [12].

Ezample 6.1. This examples is an eigenvalue problems, taken from [6]. Consider

the differential operator

N G G G
we-7(75) - % ('5)

(6.5) o s
+20(z + y)a—z + 2053- ((z + y)u) +

1
—_—u
1+z+y
on the unit square (0,1) x (0,1). We discretize (6.5) using centered differences on
a 29 x 29 grid with mesh size h = 1/30. This leads to a nonsymmetric matrix of
order N = 900. In Figure 6.1, we plot the Ritz values (marked by “o”) generated
by the look-ahead Lanczos process after n = 40, 80, 160, 320 steps. We note that
after 40 steps, the complex conjugate pair of Ritz values with maximal real part had
converged to eigenvalues of A. After 80 steps, 12 Ritz values (all on the right edge of
the spectrum) had converged, while after 160 steps the 30 Ritz values (24 on the right
edge and 6 on the left edge of the spectrum) had converged to eigenvalues of A. For
this example, we have used unit vectors with random coefficients as starting vectors
91, W, for Algorithm 3.1.

Ezample 6.2. This example is an eigenvalue problem, taken from [23], whose exact
eigenvalues are known. Generally, problems of this type arise in modeling concentra-
tion waves in reaction and transport interaction of chemical solutions in a tubular
reactor. The particular test problem used here corresponds to the so-called Brussela-
tor wave model. This example was run for a matrix 4 of size N = 100. The look-ahead
Lanczos algorithm needs n = 112 steps to obtain all the eigenvalues of A; it builds
2 blocks of size 2. For this example, we have also run the standard Lanczos process
without look-ahead, and computed the Ritz values after n = 100, 112, 120 steps. The
denominators %7 1, were checked to exceed /€ in magnitude. In all three cases, some
of the Ritz values obtained from the standard Lanczos process after deleting spurious
and ghost eigenvalues do not correspond to any of the eigenvalues of A. In particular,
the standard Lanczos process does not obtain the smallest eigenvalues of 4 even after
120 steps, and generates incorrect Ritz values, as shown in the plot. In Figure 6.2,
we plot the Ritz values generated by the look-ahead Lanczos process (marked by “o”
and the Ritz values generated by the standard Lanczos process (marked by “+”), both

after 120 steps.
Ezample 6.3. Here we consider a 6-cyclic matrix

L 0 0 0 0 B
B, I, 0 0 0 0
= _ 0 Ba I3 0 0 0
(6.6) A=|9 o B, I, 0 0]
O 0 0 Bs Is 0
0

0 0 0 Bs Is

R e R T I NS, TR AT TN

L s T T T e YR T YR T T T T T Y ST TR TR A e
PR . LR, e 5

T Ty € T

i E A RIS Rt ey e T B T

16 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL

where the diagonal blocks I, I, Is, I, Is, and Is are identity matrices of size
827, 844, 827, 838, 831, and 838, respectively, so that A is a matrix of order
N = 5005. This matrix arises in Markov chain modeling. For general p-cyclic ma-
trices A of the form (6.6), Freund, Golub, and Hochbruck [9] have shown that work
and storage of the look-ahead Lanczos process can be reduced to approximately 1 /p,
as compared to arbitrary starting vectors, if vy and w; have only one nonzero block
conforming to the block structure of A. Here, we have chosen

o-[5) -s).

where fi, g1 € R327 have random entries. The look-ahead Lanczos algorithm generates
blocks that alternately have sizes 1 and 5, starting with a block of size 1. In Figure 6.3,
we plot the Ritz values (marked by “o”) generated by the look-ahead Lanczos process
after n = 40, 80, 160, 320 steps. The standard Lanczos algorithm without look-ahead
generates one Ritz value 1 in the first step, and then breaks down in the second step.
Clearly, this example shows that the use of look-ahead is crucial if one wants to exploit
the special structure of p-cyclic matrices.
Ezample 6.4. Here we consider the partial differential equation

(6.7) Lu=f on (0,1)x(0,1)x (0,1),

where 9 [, 0u\ 0 (.0u\ 0 (.0
—_ O [zy08 _ 9 (208} _ 9 [="
Lu= Oz (e 62:) By (e By) 0z (e 5:)

du
+ﬂ(z+y+2)-a—x-+(7+ m) u,

with Dirichlet boundary conditions u = 0. The right-hand side f is chosen such that

u=(l-2)(1-g)(1=2)(1-e) (1=e) (1-)
is the exact solution of (6.7). We set the parameters in (6.7) to 8 = 30 and v = —250,
and then we discretize (6.7) using centered differences on a uniform 15 x 15 x 15 grid
with mesh size A = 1/16. This leads to a linear system (6.1) with coefficient matrix
A of order N = 3375 and 22275 nonzero elements. For the first left Lanczos vector,
we have chosen W, = #; in Algorithm 3.1. The QMR approach takes n = 149 steps
to reduce the norm of the initial residual by a factor of 10~¢; see Figure 6.4, where
the relative norm |[ra]] / ||rol| is plotted versus n (solid line). Finally, we note that the
matrix A is just the one used in Example 4.2. Recall that the look-ahead Lanczos
algorithm based on the check (4.1) with tolerance tol = ¢!/* ~ 6.0E—08 encountered
an artificial incurable breakdown. We also ran QMR based on this version of the
look-ahead Lanczos algorithm, and the resulting convergence curve is shown as the
dotted line in Figure 6.4. Notice that, due to the artificial incurable breakdown, QMR
does not converge in this case (cf. Figure 4.2). -

7. Conclusion. We have proposed an implementation of the look-ahead Lanczos
algorithm for non-Hermitian matrices. Our implementation can handle look-ahead
steps of any length. Also, the proposed algorithm requires the same nurnber of inner
products as the standard Lanczos process without look-ahead. It was our intention to
develop a robust algorithm which can be used in a black box.

FORTRAN 77 codes of our implementation of the look-ahead Lanczos algorithm
and the QMR method are available electronically from the authors (na.freund@na-
net.ornl.gov or na.nachtigal@na-net.ornl.gov).

T T T T TR T YD, T A R I Y O R SR T T T i T T T T

' AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS ALGORITHM 17

Acknowledgments. Part of this work was done while the first and third author
were visiting the Interdisciplinary Project Center for Supercomputing at ETH Ziirich,
and we thank Martin Gutknecht for his warm hospitality. The authors are grateful
to Marlis Hochbruck for her help with Example 6.3 and her careful reading of the
manuscript.

REFERENCES

[1] D.L. BoLeY, S. ELHAY, G.H. GoLuB, AND M.H. GUTKNECHT, Nonsymmeiric Lanczos and
finding orthogonal polynomials associated with indefinite weights, Numer. Algorithms, 1
(1991), pp. 21-43.

[2] D.L. BOLEY AND G.H. GoLus, The nonsymmeiric Lanczos algorithm and controllability,
Systems Control Lett., 16 (1991), pp. 97-105.

[3] C. BREZINSKI, Padé-Type Approzimation and General Orthogonal Polynomials, Birkhauser,
Basel, 1980.

[4] C. BREZINsKI, M. REDIVO ZAGLIA, AND H. SADOK, A breakdown-free Lanczos type algorithm
Jor solving linear systems, Numer. Math. (to appear).

[5] ———— Avoiding breakdown and near-breakdowns in Lanczos iype algorithms, Preprint,
Université des Sciences et Techniques de Lille Flandres-Artois, France, 1991.

[6] J. CuLLuMm AND R.A. WILLOUGHBY, A practical procedure for compuling eigenvalues of lavge
sparse nonsymmetric matrices, in Large Scale Eigenvalue Problems, J. Cullum and R.A.
Willoughby, eds., North-Holland, 1986, pp.- 193-240.

[71 A. DRaux, Polynémes Orthogonauz Formels - Applications, Lecture Notes in Mathemaltics,
Volume 974, Springer, Berlin, 1983.

[8] R.W. FREUND, Conjugate gradient type methods for linear systems with complez symmetric
coefficient matrices, SIAM J. Sci. Stat. Comput., 13 (1992) (to appear).

[8] R.W. Freunp, G.H. GoLuB, AND M. HOCHBRUCK, Krylov subspace methods for non-Hermi-
tian p-cyclic matrices, Technical Report, RIACS, NASA Ames Research Center, in prepa-
ration.

[10] R.W. Freunp, M.H. GUTKNECHT, AND N.M. NACHTIGAL, An implementation of the look-
ahead Lanczos algorithm for non-Hermitian matrices, Part I, Technical Report 90.45,
RIACS, NASA Ames Research Center, November 1990.

[11] R.W. FREUND AND N.M. NACHTIGAL, An implementation of the look-ahead Lanczos algo-
rithm for non-Hermitian matrices, Part II, Technical Report 90.46, RIACS, NASA Ames
Research Center, November 1990.

[12) ———, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer.
Math. (to appear).

[13] W.B. GRAGG, Matriz interpretations and applications of the continued fraction algorithm,
Rocky Mountain J. Math., 4 (1974), pp. 213-225.

[14] W.B. GRAGG AND A. LINDQUIST, On the partial realization problem, Linear Algebra Appl.,
50 (1983), pp- 277-319.

[15] M.H. GUTKNECHT, A completed theory of the unsymmetric Lanczos process and related algo-
rithmas, Part I, STAM J. Matrix Anal. Appl. (to appear).

[16] —— 4 completed theory of the unsymmetric Lanczos process and related algorithms, Part
II, IPS Research Report No. 90-16, Ziirich, Switzerland, September 1990.

[17] W. JOuBERT, Lanczos methods for the solution of nonsymmetric systems of linear egquations,
in Proceedings of the Copper Mountain Conference on Iterative Methods, April 1-5, 1990.

[18] S. Kung, Maultivariable and multidimensional systems: analysis and design, Ph.D. Disserta-
tion, Stanford University, Stanford, June 1977.

[19] C. LANCZOS, An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators, J. Res. Nat. Bur. Standards, 45 (1950), pp. 255-282.

[20] —— Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bur.
Standards, 49 (1952), pp. 33-53.

[21] T.A. MANTEUFFEL, The Tchebychev iteration jor nomsymmetric linear systems, Numer.
Math., 28 (1977), pp. 307-327.

[22] B.N. PARLETT, Redsction to tridisgonal form and minimal realizations, Preprint, University
of California, Berkeley, January 1990.

T T IR T e WD me v = AT ST W O TR o ey T X T LT Sy Y TR R T Ty

18 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL

{23] B.N. PARLETT AND Y. SAAD, Complex shift and invert strategics for real matrices, Linear
Algebra Appl., 88/89 (1987), pp. 575-595.

[24] B.N.PARLETT, D.R. TAYLOR, AND Z.A. L1, A look-ahead Lanczos algorithm for unsymmetric
matrices, Math. Comp., 44 (1985), pp. 105-124.

[25] E.L. STEFEL, Kernel polynomials in linear algebra and their numerical applications, u.s.
National Bureau of Standards, Applied Mathematics Series, 49 (1958), pp. 1-22.

[26] D.R. TAYLOR, Analysis of the look ahesd Lanczos algorithm, Ph.D. Dissertation, University
of California, Berkeley, November 1982.

[27] H.F. WALKER, Implementation of the GMRES method uaing Howseholder transformations,
SIAM J. Sci. Stat. Comput., 9 (1988), pp. 152-163.

[28] J.H. WiLkinsoN, The Algedraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.

S e e R BT LAY e VI B T L T TR, T T R S T N A T AP S TR s Gerat R ERES S T

R TS S B g VT, (T T A

- AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS ALGORITHM 19

101 L) L] L) +
104 | -
10t 1

102

st]

T

10-8

wonf]

lc.l'[1 L - 1 1
0 20 40 60 80 100

Figure 4.1. omin (3,(,,)) (dots), min; <k <i(n) (7min (8%)) (solid line), and
V7T Fmin (V™) (dotted line), plotted versus the iteration index n

B s TR Sl ol SURAAIE, Lovctn b ghr S anbrll e b7t L oli S el ¢ ARt o - SE i S L AT e T o W S) B 70 e caie Ao (o £ oMMt it T N o2 P 5 o auth TR AT L v n T F g
R P A ? 1 AT TR AT AL e B e & BRI A £ To I A P

e

20 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL

104

3 ' ' E
3]

103 : : 2
0 50 100 150

Figure 4.2. ¢}/¢ (dotted line) and €1/3 (solid line), plotted
yversus the iteration index n

e g S St e, s i S b s i Y N B s

e o AN T, S TS T IS T [T TR L S S s EAN R S
- T - sTITTTL T TRt L P S B S,

AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS ALGORITHM

2 After 40 steps
° o ' °
0% o o 0%
° 0
l;o . 1
(1] o oo o
> o
o
At o °
NI . Ce
0 5 10
2 After 160 steps
o ' °
2’9 o°°oo
Q&O Q 00000

)

0 § -
o

A SETmagi¥es -
oy o°°o

2L e oo

0 5 10

2 After 80 steps
?90 0°° °
°0, o ©
Ir §° ° °0% ®° ° oo 7
g H
0 ° °
[o
o 060 go
-1k %6 o0° 00 o 0
;oo %0y % 0
) ®oa
2 1
0 5 10
2 After 320 steps
00 °
o%°o°°°
1 o 0°o°o B
0q% 0
0 -
200
-1 03,0:000 -1
°o°° o
° o
2
0 5 10

Figure 6.1. Ritz values for Example 6.1, obtained after n = 40, 80, 160, 320 steps
of the look-ahead Lanczos algorithm

21

YT R ST IS T RO TR T T AT R

99 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL

5 L] L4 L] L] T L]

-

)
4} »
2 =
3t r
x y
2+ A

x o
1F . 4
x x
oL SEASSEREEEE IR BN F B B B ¥ ESIEGEIIIINOSINESSOIMERID X X
x
x
-1k i
x

2k J
X X
3k o
3 »
4 »

»

»

-5 i) L 1 . N

-350 -300 -250 -200 -150 -100 -50 0

Figure 6.2. Ritz values (marked by “o” respectively “+") for Example 6.2, obtained
from the look-ahead respectively standard Lanczos algorithm

e AT S AT o D T I AT A Y T T T T T TR

Y TR A TR T R T

AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS ALGORITHM 23

1 After 40 steps 1 After 80 steps
[} L°J L 1% [+] L)
IR Yoo of
05F ° ° . 0.5F o o -
b . ° o
op [L 0 -ego [} o:a.
| [o 4 o o
o Q
05F o o o5+ ° 4
o ° o% 6,0 :o
° o o ° ¥ A Y
-1 9 o 1 a .0 -1 I
0 1 2 0 1 2
1 After 1§0 steps 1 After 3?0 steps
osf £ N% - 0.5} }""“‘{ -
@ @ . b (4
0 —1‘{: : ° 20230— 0 -f ° %>-
LY Cd
[) &,)
05F ¥ o o % A osF & $
- <
-1 ! -1 s
0 1 2 0 1 2

Figure 6.3. Ritz values for Example 6.3, obtained after n = 40, 80, 160, 320 steps
of the look-ahead Lanczos algorithm

L L ey e T TS TR TS T LA S T i Vi A S R

294 ROLAND W. FREUND, MARTIN H. GUTKNECHT, AND NOEL M. NACHTIGAL

100 — ,

101}

102}

103}

104 |

103

T

e

106}

107 ' :
0 50 100 150

Figure 6.4. Relative residual norm [[rn]l/[lro|| plotted
versus n, for Example 6.4

5 A T AT T S T S S R TS T A T Y P T I T T I T S Y
¥ R v VR wlw s - RS 2 AN o S S SIS

